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We show that limit transitions from Askey�Wilson polynomials to q-Racah, little
and big q-Jacobi polynomials can be made rigorous on the level of their
orthogonality measures in a suitable weak sense. This allows us to derive the
orthogonality relations and norm evaluations for the q-Racah polynomials, little
and big q-Jacobi polynomials by taking limits in the orthogonality relations and
norm evaluations for the Askey�Wilson polynomials. � 1998 Academic Press

1. INTRODUCTION

In this paper we consider three families of basic hypergeometric
orthogonal polynomials as limit cases of the Askey�Wilson polynomials.
The three limit cases we consider are the q-Racah polynomials, the little
q-Jacobi polynomials, and the big q-Jacobi polynomials. These limits are
well known in the sense of pointwise convergence. We will prove these limit
transitions in a suitable weak sense on the level of their orthogonality
measures.

To be more precise, we show that the continuous part of the orthogo-
nality measure of the Askey�Wilson polynomials disappears in each of the
three limit transitions while the discrete part of the orthogonality measure
tends to the discrete orthogonality measure of the q-Racah polynomials,
the little q-Jacobi polynomials respectively the big q-Jacobi polynomials.
We prove then the orthogonality relations and norm evaluations for the
q-Racah polynomials, the little and the big q-Jacobi polynomials by
taking limits in the orthogonality relations and norm evaluations for the
Askey�Wilson polynomials.

The contents of this paper are as follows. In Section 2 we introduce the
Askey�Wilson polynomials and state their orthogonality relations and
norm evaluations. Furthermore, we introduce the q-Racah polynomials, the
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little q-Jacobi polynomials, and the big q-Jacobi polynomials as limits of
the Askey�Wilson polynomials. In Sections 3, 4 respectively 5 we give new
proofs of the orthogonality relations and norm evaluations for the q-Racah
polynomials, little q-Jacobi polynomials respectively big q-Jacobi polyno-
mials by proving these three limits in a suitable weak sense on the level of
their orthogonality measures. In Section 6 we give some concluding
remarks on the methods presented in this paper.

2. PRELIMINARIES

Throughout the paper we assume that q is a real number between 0 and
1. We denote the q-shifted factorials by (a; q)k :=>k&1

i=0 (1&aqi) (k # N),
(a; q)0 :=1 and (a; q)� :=limk � � (a; q)k and we use the notation

(a1 , ..., ar ; q)k := `
r

i=1

(ai ; q)k

for products of q-shifted factorials. The basic hypergeometric series of type
s+1,s are then given by

s+1,s \a1 , ..., as+1

b1 , ..., bs
; q, z+= :

�

m=0

(a1 , ..., as+1 ; q)m

(b1 , ..., bs , q; q)m
zm. (2.1)

Askey and Wilson [AW2] introduced a very general family of basic hyper-
geometric orthogonal polynomials depending on four parameters a, b, c, d
which is now known as the family of Askey�Wilson polynomials. In terms
of the basic hypergeometric series (2.1) they are given by

PAW
n (z; a, b, c, d ) :=a&n(ab, ac, ad; q)n4,3 \q&n, qn&1abcd, az, az&1

ab, ac, ad
; q, q+

for n # Z+ . Then PAW
n (z) is a polynomial in z+z&1 of degree n and the

corresponding monic polynomial in z+z&1 is given by

pAW
n (z; a, b, c, d ) :=(abcdqn&1; q)&1

n PAW
n (z; a, b, c, d ).

The orthogonality relations and norm evaluations for the monic Askey�
Wilson polynomials can be stated as follows.

Theorem 2.1 [AW2, Theorem 2.3]. Assume that pairwise products
of a, b, c, d as a multiset (so both a2 and ab are considered among the
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products) do not belong to the set [q& j] j # Z+
. Then the monic Askey�Wilson

polynomials satisfy the orthogonality relations

1

2? - &1 |
z # C

( pAW
m pAW

n )(z; a, b, c, d; q) 2AW
c (z; a, b, c, d )

dz

z

=$m, nNAW (n; a, b, c, d )

with weight function

2AW
c (z; a, b, c, d ) :=

(z2, z&2; q)�

(az, az&1, bz, bz&1, cz, cz&1, dz, dz&1; q)�
.

Here C is a positively oriented, continuous differentiable Jordan curve
containing 0 and the four sequences [eq j]j # Z+

(e=a, b, c, d ) and separating
them from [e&1q& j] j # Z+

(e=a, b, c, d ). The quadratic norms NAW (n) of
the monic Askey�Wilson polynomials are explicitly given by

NAW (n; a, b, c, d)

=
2(q2n&1abcd, q2nabcd; q)�

(qn+1, qn&1abcd, qnab, qnac, qnad, qnbc, qnbd, qncd; q)�
.

For the proof of the orthogonality relations and norm evaluations,
Askey and Wilson [AW2] used the q-Pfaff�Saalschu� tz sum [AW2, (1.29);
GR, (II.12), p. 237] and the explicit evaluation of the integral over the
weight function,

1

2? - &1 |
z # C

2AW
c (z; a, b, c, d )

dz

z
=

2(abcd; q)�

(q, ab, ac, ad, bc, bd, cd; q)�
(2.2)

(cf. [AW2, Theorem 2.1]). The integral (2.2) is a q-analogue of the classi-
cal beta integral and its evaluation is proved in [AW2] by summing up
four sequences of residues by a summation formula of a very-well poised
6,5 series [AW2, (2.2)], [GR, (II.20), p. 238] and subsequently summing
the four remaining terms with the help of an elliptic function identity. More
elementary proofs of (2.2) were obtained, for instance, in [R], [IS], [K3].

A partially discrete, partially continuous orthogonality measure can be
obtained by deforming C over some of the poles of 2AW

c and picking up their
residues. The poles of 2AW

c are simple for generic parameters a, b, c, d{0 and
are given by the eight sequences [eq j] j # Z+

, [e&1q&j] j # Z+
, (e=a, b, c, d ).

We write

2AW
d (eqi; e; f, g, h) :=resz=eqi \2AW

c (z; a, b, c, d )
z + (2.3)
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for the residues, where f, g, h are such that [e, f, g, h]=[a, b, c, d] (counted
with multiplicity). When 2AW

c has a simple pole in eqi, then

resz=e&1q&i \2AW
c (z; a, b, c, d )

z +=&2AW
d (eqi; e; f, g, h) (2.4)

by the invariance of 2AW
c (z) under the transformation z [ z&1, and we

have the explicit formula

2AW
d (eqi; e; f, g, h) :=

(e&2; q)�

(q, ef, f�e, eg, g�e, eh, h�e; q)�

_
(e2, ef, eg, eh; q) i

(q, qe� f, qe�g, qe�h; q) i

(1&e2q2i)
(1&e2) \ q

efgh+
i

(2.5)

(cf. [AW2, Theorem 2.4] with a slight correction in [AW2, (2.10)]).
We end this section by introducing the q-Racah polynomials, big and

little q-Jacobi polynomials as limit cases of the Askey�Wilson polynomials.
The monic q-Racah polynomials [ pqR

n ( } ; a, b, c, N; q)]N
n=0 for N # N may

be considered as a limit case of the monic Askey�Wilson polynomials by
sending d to b&1q&N,

pqR
n (z; a, b, c; N) :=pAW

n (z; a, b, c, b&1q&N). (2.6)

Note that for d=b&1q&N, the parameters do no longer satisfy the assumptions
of Theorem 2.1.

The monic little q-Jacobi polynomials [ pL
n ( } ; a, b)]n # Z+

can be
considered as limit cases of the monic Askey�Wilson polynomials by
substituting

tL(=) :=(=q1�2b, =&1q1�2, &q1�2, &q1�2a) (2.7)

for the four variables of the Askey�Wilson polynomials, rescaling of the
z-variable, and taking the limit = a 0,

pL
n (z; a, b) :=lim

= a 0
(=q&1�2)n pAW

n (=&1q1�2z; tL(=)) (2.8)

=
(qb; q)n

(qb)n (qn+1ab; q)n
3,2 \q&n, qn+1ab, qbz

qb, 0
; q, q+ (2.9)

=
(&1)n q

( n
2

)
(qa; q)n

(qn+1ab; q)n
2,1 \q&n, qn+1ab,

qa
; q, qz+ (2.10)
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(cf. [K2, Proposition 6.3] and take into account that the Askey�Wilson
polynomials used in [K2] are written as functions of (z+z&1)�2 and are
normalized differently). In fact, an easy calculation yields

(=q&1�2)n pAW
n (=&1q1�2z; tL(=))

=
(qb; q)n

(qb)n (qn+1ab; q)n
:
n

m=0

(q&n, qn+1ab; q)m

(q, qb; q)m
qm

_(&=qm+1b, &=qm+1ab; q)n&m

_ `
m&1

i=0

((1+=2b2q2i+1)&qi+1b=q&1�2h1(=&1q1�2z)) (2.11)

with h1(z) :=z+z&1, so (2.9) follows directly from the observation that
lim= a 0(u=; q)m=1 and

lim
u a 0

uh1(u&1z)=z. (2.12)

A transformation formula for terminating 2,1 series [GR, (III.7), p. 241]
yields (2.10) and shows that the little q-Jacobi polynomials are also defined
for b=0. The little q-Jacobi polynomial pL

n (z; a, b) is a monic polynomial
of degree n in the variable z. So in the limit (2.8) we go from a polynomial
in z+z&1 to a polynomial in z. This can be made more transparent as
follows. Expand pAW

n in powers of z+z&1,

pAW
n (z; a, b, c, d )= :

n

r=0

cAW
n, r (a, b, c, d ) hr(z) (cAW

n, n =1)

with hr(z) :=(h1(z))r=(z+z&1)r. Then (2.12) extends to the limit

lim
u a 0

urhr(u&1z)=zr (r # N) (2.13)

so by (2.11) and (2.13) we conclude that

pL
n (z; a, b)= :

n

r=0

cL
n, r(a, b) zr

with

lim
= a 0

(=q&1�2)n&r cAW
n, r (tL(=))=cL

n, r(a, b). (2.14)
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The monic big q-Jacobi polynomials [ pB
n ( } ; a, b, c, d)]n # Z+

may be
considered as limit cases of the monic Askey�Wilson polynomials by
substituting

tB(=) :=(=a(qd�c)1�2, =&1(qc�d )1�2, &=&1(qd�c)1�2, &=b(qc�d )1�2) (2.15)

for the four variables of the Askey�Wilson polynomials, rescaling of the
z-variable, and taking the limit = a 0,

pB
n (z; a, b, c, d) :=lim

= a 0
(=(cd�q)1�2)n pAW

n (=&1(q�cd )1�2 z; tB(=))

=
(qa, &qad�c; q)n

(qn+1ab; q)n (qa�c)n3,2 \q&n, qn+1ab, qza�c
qa, &qad�c

; q, q+
(2.16)

(cf. [K2, Proposition 6.1]). Note that pB
n (z; a, b, c, d ) is a monic polynomial

of degree n in the variable z. Similarly as in the little q-Jacobi case, we have

pB
n (z; a, b, c, d )= :

n

r=0

cB
n, r(a, b, c, d ) zr

with

cB
n, r(a, b, c, d )=lim

= a 0
(=(dc�q)1�2)n&r cB

n, r(tB(=)). (2.17)

3. LIMIT TO q-RACAH POLYNOMIALS

The orthogonality relations and norm evaluations for the monic q-Racah
polynomials can be stated follows.

Theorem 3.1 [AW1, Sect. 2]. Let N # N. For generic parameters a, b, c
we have the orthogonality relations

:
N

i=0

( pqR
m pqR

n )(bqi; a, b, c; N) 2qR(bq i; b; a, c, b&1q&N)

=$m, nNqR(n; b; a, c, b&1q&N)

for m, n # [0, ..., N], with

2qR(bq i; b; a, c, d ) :=
(1&b2q2i)(ab, b2, bc, bd; q) i

(abcdq&1) i (1&b2)(q, qa&1b, qc&1b, qd &1b; q) i
.
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The quadratic norms of the monic q-Racah polynomials are explicitly given
by

NqR(n; b; a, c, d)

:=
(q, ab, ac, ad, bc, bd, cd; q)n

(qn&1abcd; q)n (abcd; q)2n

(a�b, c�b, d�b, abcd; q)�

(ac, ad, cd, b&2; q)�
.

Proof. In view of continuity we may take as generic conditions on the
parameters a, b, c that a, b, c # C"[0] and that the 6 arguments arg (e),
arg (e&1) # [0, 2?) (e=a, b, c) are mutually different. Let d # C"[0] be
such that the 8 arguments arg(e), arg(e&1) (e=a, b, c, d ) are mutually dif-
ferent. Then the poles of 2AW

c (z; a, b, c, d ) are simple and the conditions of
Theorem 2.1 are satisfied. The residue 2AW

d (2.3) at z=bq i can then be
written as

2AW
d (bqi; b; a, c, d)=K(b; a, c, d ) 2qR(bqi; b; a, c, d )

with K(b; a, c, d ) given by

K(b; a, c, d )=
(b&2; q)�

(q, ab, a�b, bc, c�b, bd, d�b; q)�
(3.1)

in view of (2.5). The factor K(b; a, c, d ) is non-zero and independent of i.
By Cauchy's Theorem and (2.4) we obtain

:
N

i=0

( pAW
m pAW

n )(bqi; a, b, c, d ) 2qR(bqi; b; a, c, d )

=
NAW (n; a, b, c, d )

2K(b; a, c, d)
$n, m&(K(b; a, c, d))&1 1

4? - &1

_|
z # C

( pAW
m pAW

n )(z; a, b, c, d ) 2AW
c (z; a, b, c, d )

dz
z

, (3.2)

where C is a positively oriented, continuous differentiable Jordan curve
containing 0 together with the sequences [bqN+1+ j]j # Z+

, [xq j] j # Z+

(x=a, c, d ), [b&1q& j]N
j=0 and separating them from the sequences

[b&1q&N&1& j] j # Z+
, [x&1q& j]j # Z+

(x=a, c, d) and [bq j]N
j=0 . Consider a

sequence [dk]k # Z+
converging to b&1q&N such that the 8 arguments

arg (e), arg (e&1) (e=a, b, c, dk) are mutually different for all k. Then the
limit

lim
k � � |

z # C
( pAW

m pAW
n )(z; a, b, c, dk) 2AW

c (z; a, b, c, dk)
dz
z
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exists, since it equals

|
z # C

( pqR
m pqR

n )(z; a, b, c; N) 2AW
c (z; a, b, c, b&1q&N)

dz
z

by the Bounded Convergence Theorem, compactness of C, and by (2.6).
For the constant K(b; a, c, d ), we have

lim
k � �

(K(b; a, c, dk))&1=0

because of the factor (bd; q)� in the denominator of K(b; a, c, d). Since

NAW (n; a, b, c, d)
2K(b; a, c, d )

=NqR(n; b; a, c, d ),

the theorem follows by taking the limit d � b&1q&N at both sides of (3.2)
along the sequence [dk]k # Z+

. K

In other words, the continuous part of the orthogonality measure
vanishes in the limit from Askey�Wilson polynomials to q-Racah polyno-
mials because the residues 2AW

d at z=bqi (i=0, ..., N) contain a common
factor which blows up in the limit d � b&1q&N.

Askey and Wilson [AW1] obtained the orthogonality relations and
norm evaluations for the q-Racah polynomials from a summation formula
for very well poised terminating 6,5 series [AW1, (2.3); GR, (II.21),
p. 238] and the q-Pfaff�Saalschu� tz sum [AW1, (2.5); GR, (II.12), p. 237].
In particular, they obtained the summation formula

:
N

i=0

2qR(bqi; b; a, c, b&1q&n)=
(qb2, q�ac; q)N

(qb�a, qb�c; q)N
(3.3)

using a summation formula for very well poised terminating 6,5 series
[AW1, (2.3); GR, (II.21), p. 238].

4. LIMIT TO LITTLE q-JACOBI POLYNOMIALS

Let VAW be the set of parameters (a, b, c, d ) which are real or appear
in conjugate pairs, and which satisfy the additional conditions that
the pairwise products ab, ac, ad, bc, cd � R�1 :=[x # R | x�1]. If
(a, b, c, d ) # VAW , then there are at most two parameters with modulus
>1. Parameters with moduli >1 are then necessarily real, and if two
parameters have moduli >1 then they have opposite sign. For parameters

317ASKEY�WILSON POLYNOMIALS



(a, b, c, d ) # VAW , the polynomials pAW
n are orthogonal with respect to a

(partly continuous, partly discrete) positive measure,

( pAW
n ( } ; a, b, c, d ), pAW

m ( } ; a, b, c, d )) a, b, c, d
AW =$m, nNAW (n; a, b, c, d ),

(4.1)

where

( f, g) a, b, c, d
AW :=

1

2? - &1 |
z # T

f (z) g(z) 2AW
c (z; a, b, c, d )

dz

z

+2 :

e=a, b, c, d
i=0, ..., Ne

f (eqi) g(eqi) 2AW
d (eqi; e; f, g, h). (4.2)

Here T is the unit circle in the complex plane traversed in the counterclock-
wise direction, [e, f, g, h]=[a, b, c, d] (counted with multiplicity) and
Ne=&1 if |e|�1, respectively Ne is the largest positive integer such that
|eqNe|>1 if |e|>1. We use here the convention that sums over empty sets
are zero, so the sum in the right hand side of (4.2) is over parameters e
with modulus >1 only. The orthogonality relations and norm evaluations
(4.1) follow from Theorem 2.1, (2.3), (2.4), Cauchy's Theorem and by a
continuity argument in the parameters (see [AW2, Theorem 2.4]). In fact,
the orthogonality relations and norm evaluations (4.1) hold for generic
parameter values a, b, c, d, with ( } , } ) a, b, c, d

AW given by (4.2).
We will obtain the orthogonality relations and norm evaluations for the

little q-Jacobi polynomials by taking suitable limits in the orthogonality
relations and norm evaluations (4.1). We will need some elementary
limits and estimates involving q-shifted factorials, which we collect in the
following lemma.

Lemma 4.1. For given =0 # R, we set =k :==0qk.

(a) Let c # C. For =0>0 with |c| =0 � [q&l] l # Z+
there exist positive

constants M\>0 which only depend on =0 and |c|, such that M&�
|(c=k ; q)� |�M+ for all k # Z+ . Furthermore, we have limk � �

(c=k ; q)�=1.

(b) Let a, b # C, and set

f[l, m](=; a, b) :=
(=&1aq1&m; q)m

(=&1bq1&l&m; q)m
, l, m # Z+ .
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Let =0>0 such that =&1
0 |b| � [qk]k # Z+

. Then there exists a positive
constant M>0 which depends only on =0 , |a| and |b|, such that
| f[l, m](=k ; a, b)|�M |qla�b|m for all k, l, m # Z+ . Furthermore, we have
limk � � f[l, m](=k ; a, b)=(qla�b)m.

(c) Let ui , vj # C"[0] for i # [1, ..., r], j # [1, ..., s] and assume that
r<s, or that r=s and |u1 } } } ur |<|v1 } } } vr |. Set

g(=) :=
(=&1u1 , ..., =&1ur ; q)�

(=&1v1 , ..., =&1vs ; q)�
.

Let =0>0 such that =&1
0 |vj | � [ql]l # Z for j # [1, ..., s]. Then there exists a

positive constant M>0 which depends only on =0 , |ui | , and |vj |, such that
supk # Z+

| g(=k)|�M. Furthermore, we have limk � � g(=k)=0.

Proof. The proof of (a) is straightforward. For (b) and (c) use the
formula

(xq1&m; q)m=q
&( m

2 )(&x)m (x&1; q)m (4.3)

for q-shifted factorials to rewrite f[l, m] as

f[l, m](=; a, b)=(qla�b)m (a&1=; q)m

(b&1ql=; q)m
,

and to rewrite g(=k) as

g(=k)=\u1 } } } ur

v1 } } } vs
(&q(k+1)�2=0)s&r+

k (q=0u&1
1 , ..., q=0u&1

r ; q)k

(q=0v&1
1 , ..., q=0 v&1

s ; q)k
g(=0).

(4.4)

The limits for f[l, m] and g given in (b) respectively (c) are now immediately
clear. Furthermore we have the estimate | f[l, m](=k ; a, b)|�M |qla�b|m with

M=
(&|a|&1 =0 ; q)�

( |b|&1 =0qk0; q)�
`

[i # Z+ | 1<|b|&1 =0qi<2]

( |b|&1 =0qi&1)&1>0,

where k0 is the smallest positive integer such that |b|&1 =0qk0<1. Here we
use the convention that an empty product is equal to 1. The estimate for
| g(=k)| in (c) is easily derived from (4.4), the assumptions on r, s, and on
the parameters ui , vj , and from estimates similar to the estimate for M in
the proof of (b). K

For the formulation of the orthogonality relations and norm evaluations
of the little q-Jacobi polynomials we use the definition of the Jackson
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q-integral and the q-gamma function. The Jackson q-integral of a
(continuous) function f over an interval [u, v] is defined by

|
v

u
f (x) dqx :=|

v

0
f (x) dqx&|

u

0
f (x) dqx,

|
v

0
f (x) dqx :=(1&q) :

�

i=0

f (vqi) vq i.

When q A 1, the q-integral of f becomes the usual Lebesgue integral of f
over the interval [u, v]. The q-gamma function 1q(z) is defined by

1q(z) :=
(q; q)�

(qz; q)�
(1&q)1&z, z � &Z+ . (4.5)

The q-gamma function 1q(z) tends to the gamma function 1(z) when q A 1.
The orthogonality relations and norm evaluations for the monic little

q-Jacobi polynomials can now be stated as follows.

Theorem 4.2 [AA1, Theorem 9]. Let 0<a<1�q and b<1�q. Then

|
1

0
( pL

m pL
n )(z; a, b) 2L(z; a, b) dqz=$m, n NL(n; a, b),

with

2L(z; a, b) :=
(qz; q)�

(qbz; q)�
z: (a=q:).

The quadratic norms NL(n) of the monic little q-Jacobi polynomials are
explicitly given by

NL(n; a, b)

=
1q(n+1) 1q(n+1+:) 1q(n+1+;) 1q(n+1+:+;)

1q(2n+1+:+;) 1q(2n+2+:+;)
q(n+:) n,

where b=q;.

Proof. We assume throughout the proof that b{0. At the end of the
proof we can remove this assumption by continuity. For given =0 # R, we
set =k :==0qk. We claim that there exists an =0>0 such that

lim
k � �

(&=&1
k q, &=&1

k qa; q)� (=kq&1�2)m+n (hm , hn) tL(=k)
AW

=2(q; q)&2
� (1&q)&1 |

1

0
zm+n2L(z; a, b) dqz (4.6)
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for all m, n # Z+ , where hr(z) :=(z+z&1)r and tL(=) is given by (2.7). Then
we obtain from (2.13), (2.14), and (4.6),

lim
k � �

(&=&1
k q, &=&1

k qa; q)� (=kq&1�2)m+n ( pAw
m , pAW

n ) tL(=k)
AW

=:
r, s

lim
k � �

[(=kq&1�2)m&r+n&s (cAW
m, r cAW

n, s )(tL(=k))

_(&=&1
k q, &=&1

k qa; q)� (=k q&1�2)r+s (hr , hs) tL(=k)
AW ]

=2(q; q)&2
� (1&q)&1 :

r, s

(cL
m, rcL

n, s)(a, b) |
1

0
zr+s2L(z; a, b) dqz

=2(q; q)&2
� (1&q)&1 |

1

0
( pL

m pL
n )(z; a, b) 2L(z; a, b) dq z,

where the sum is over r # [0, ..., m] and s # [0, ..., n]. On the other hand, a
straightforward calculation gives

lim
k � �

(&=&1
k q, &=&1

k qa; q)� (=kq&1�2)2n NAW (n; tL(=k))

=2(q; q)&2
� (1&q)&1 NL(n; a, b),

hence the theorem follows from (4.6) and from the orthogonality relations
and norm evaluations (4.1) for the Askey�Wilson polynomials. So it
remains to prove that there exists an =0>0 such that (4.6) is valid for all
m, n # Z+ . Note that the modulus of the parameter =&1q1�2 in tL(=) blows
up for = a 0, so it contributes to the discrete part of the symmetric form
( } , } ) tL(=)

AW . The parameter &aq1�2 in tL(=) gives rise to a discrete term in
( } , } ) tL(=)

AW if q&1�2<a<q&1. So for =>0 sufficiently small, we obtain from
(2.4), (2.5), and (4.2),

(&=&1q, &=&1qa; q)� (=q&1�2)m+n (hm , hn) tL(=)
AW

=
1

2? - &1 |
T

(=q&1�2)m+n hm(z) hn(z) 2� AW
c (z; =)

dz

z

+2 :
�

i=0

(=q&1�2)m+n (hmhn)(=&1q1�2qi) 2� AW
d, 1 (i; =)

+2/(a>q&1�2)(=q&1�2)m+n (hmhn)(&aq1�2) 2� AW
d, 2 (=), (4.7)
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where /(A) is 1 if A is true and 0 if A is false. Here 2� AW
c is given by

2� AW
c (z; =)

=(&=&1q, &=&1qa; q)� 2AW
c (z; tL(=))

=
(&=&1q, &=&1qa; q)�

(=&1q1�2z, =&1q1�2z&1; q)�

_
(z2, z&2; q)�

(=q1�2bz, =q1�2bz&1, &q1�2z, &q1�2z&1, &q1�2az, &q1�2az&1; q)�
,

and the discrete weights are given by

2� AW
d, 1 (i; =)=(&=&1q, &=&1qa; q)�

_2AW
d (=&1q1�2+i; =&1q1�2; =q1�2b, &q1�2, &q1�2a)

=
(=2q&1; q)�

(q, qb, =2b, &=, &a=; q)�

_
(=&2q, &=&1qa, qb; q) i

(=&2qb&1, &=&1qa&1, q; q) i

(=&2q2i+1; q)1

(=&2q; q)1

(qab)&i

if =<q1�2+i and zero otherwise, and

2� AW
d, 2 (=)=(&=&1q, &=&1qa; q)�

_2AW
d (&q1�2a; &q1�2a; =&1q1�2, =q1�2b, &q1�2)

=
(&=&1q, q&1a&2; q)�

(&=&1a&1, q, &=qab, &=ba&1, qa, a&1; q)�
.

Since a # (0, 1�q), we have by Lemma 4.1 (a) and (c) that

lim
k � �

2� AW
c (z; =k)=0 (z # T )

and

sup
k # Z+, z # T

|2� AW
c (z; =k)|<�,

for generic =0>0. So by the Bounded Convergence Theorem,

lim
k � �

1

2? - &1 |
z # T

(=k q&1�2)m+n hm(z) hn(z) 2� AW
c (z; =k)

dz

z
=0 (4.8)
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for generic =0>0. Since a&1>q, we obtain by Lemma 4.1 (a) and (c) the
limit

lim
k � �

2� AW
d, 2 (=k)=0 (4.9)

for generic =0>0. For the sum of the infinite discrete sequence in (4.7) we
have for =0>0 generic,

lim
k � �

2� AW
d, 1 (i; =k)=(q; q)&2

� 2L(q i; a, b) qi (4.10)

for all i # Z+ . The limit (4.10) can for instance be checked using
Lemma 4.1(a) and (b). As an example, let us calculate the limit k � � of
the factor (=&2

k q; q) i �(=&2
k qb&1; q) i in 2� AW

d, 1 (i; =k),

lim
k � �

(=&2
k q; q) i �(=&2

k qb&1; q) i = lim
k � �

(=&2
k+i q; q) i �(=&2

k+iqb&1; q) i

= lim
k � �

f[0, i](= i+2k ; =&1
0 , =&1

0 b&1)=bi,

(4.11)

where the last equality follows from Lemma 4.1(b). The limits of the other
=-depending factors in 2� AW

d, 1 (i; =) can be calculated in a similar way.
Combining (2.13), (4.7), (4.8), (4.9), and (4.10) we obtain for arbitrary

m, n # Z+ ,

lim
k � �

(&=&1
k q, &=&1

k qa; q)� (=k q&1�2)r+s (hm , hn) tL(=k)
AW

=2 lim
k � �

:
i # Z+

(=kq&1�2)m+n (hm hn)(=&1
k q1�2qi) 2� AW

d, 1 (i; =k)

=2(q; q)&2
� (1&q)&1 |

1

0
zm+n2L(z; a, b) dq z (4.12)

provided that we may interchange limit and summation in (4.12). We show
that for generic =0>q1�2 it is allowed to interchange limit and summation
in (4.12), which will complete the proof of the theorem. Since the weights
2L(qi; a, b) are positive and the infinite sum ��

i=0 2L(q i; a, b) qi is
absolutely convergent, it suffices to prove that for generic =0>q1�2 and for
r # Z+ ,

sup
k # Z+

|(=kq&1�2)r hr(=&1
k q1�2qi) 2� AW

d, 1 (i; =k)|�M2L(qi; a, b) qi (4.13)
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for some M>0 independent of i # Z+ . Since 2� AW
d, 1 (i, =)=0 for =�q1�2+i, we

have for =0>q1�2

sup
k # Z+

|(=kq&1�2)r hr(=&1
k q1�2qi) 2� AW

d, 1 (i; =k)|

= sup
k # Z+

|(=kq iq&1�2)r hr(=&1
k q1�2) 2� AW

d, 1 (i; qi=k)|

�M$ sup
k # Z+

|2� AW
d, 1 (i; =k qi)| (4.14)

with M$ independent of i, and the required estimate (4.13) follows from
the estimates of Lemma 4.1(a) and (b). For instance, we have seen that
the factor (=&2

k q; q) i �(=&2
k qb&1; q) i in 2� AW

d, 1 (i; =k) tends to b i for k � �
(cf. (4.11)). The corresponding estimate, needed for (4.13), is then provided
by

sup
k # Z+

|((=kqi)&2 q; q) i �((=k qi)&2 qb&1; q) i |

= sup
k # Z+

| f[0, i](= i+2k ; =&1
0 , =&1

0 b&1)|�M1 |b| i

with M1>0 independent of i # Z+ , in view of Lemma 4.1(b). Estimates for
the other =-depending factors in 2� AW

d, 1 (i; =) can be obtained in a similar
way. K

Note that tL(=) # VAW for =>0 sufficiently small if the parameters a and
b satisfy the assumptions of Theorem 4.2 (tL(=) given by (2.7)). So in the
proof of Theorem 4.2 we obtain the positive orthogonality measure for the
little q-Jacobi polynomials as a limit case of the positive (partly discrete,
partly continuous) orthogonality measure (4.2) for the Askey�Wilson poly-
nomials. In particular, the proof of Theorem 4.2 shows that the only part
of the (rescaled) orthogonality measure (4.2) which survives in the limit
from Askey�Wilson polynomials to little q-Jacobi polynomials (2.8) is a
sum of an infinite sequence of discrete weights coming from residues of
2AW

c (z)�z at z==&1q1�2qi, where =&1q1�2 is the parameter in tL(=) which
tends to infinity in the limit = a 0. This infinite sequence of weights is, up to
a positive constant, exactly the set of weights which occur in the
orthogonality measure for the little q-Jacobi polynomials.

The little q-Jacobi polynomials were first observed by Hahn [H].
A detailed discussion of the orthogonality relations and norm evaluations
was given by Andrews and Askey [AA1]. The orthogonality relations and
norm evaluations were derived from the q-binomial formula [AA1, (3.6);
GR, (II.3), p. 236] and the q-Pfaff�Saalschu� tz formula [AA1, (3.7); GR,
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(II.12), p. 237]. The evaluation of the q-Jackson integral over the weight
function

|
1

0
2L(z; a, b) dqz=

1q(:+1) 1q(;+1)
1q(2+:+;)

(a=q:, b=q;) (4.15)

is a well known q-analogue of the beta integral, and is equivalent with the
q-binomial formula [GR, (II.3), p. 236].

5. LIMIT TO BIG q-JACOBI POLYNOMIALS

In this section, we prove the orthogonality relations and norm evaluations
for the big q-Jacobi polynomials by extending the limit (2.16) to the level
of the orthogonality measure (4.2). The methods are analogous to the little
q-Jacobi polynomials case which we have treated in the previous section.

The orthogonality relations and norm evaluations for the monic big
q-Jacobi polynomials can be stated as follows.

Theorem 5.1 [AA3, Sect. 3]. Let c, d>0 and &c�dq<a<1�q, &d�cq
<b<1�q or a=cu, b=&du� with u # C"R. Then

|
c

&d
( pB

m pB
n )(z; a, b, c, d ) 2B(z; a, b, c, d ) dqz=$m, nNB(n; a, b, c, d ),

(5.1)

with

2B(z; a, b, c, d ) :=
(qz�c, &qz�d; q)�

(qaz�c, &qbz�d; q)�
.

The quadratic norms NB(n) of the monic big q-Jacobi polynomials are
explicitly given by

NB(n; a, b, c, d )

:=
1q(n+1) 1q(n+1+:) 1q(n+1+;) 1q(n+1+:+;)

1q(2n+1+:+;) 1q(2n+2+:+;)

_
(cd )n+1 q( n

2)(&c�d, &d�c; q)�

(c+d )(&qn+1bc�d, &qn+1ad�c; q)�
,

where a=q: and b=q;.
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Proof. We assume throughout the proof that a, b{0. This assumption
can be removed at the end of the proof by continuity. For given =0 , we set
=k :==0qk. We claim that there exists an =0>0 such that

lim
k � �

(&=&2
k q; q)� (=k(cd�q)1�2)m+n (hm , hn) tB(=k)

AW

=
2(c+d)

(1&q) cd(q, q, &c�d, &d�c; q)�
|

c

&d
zm+n2B(z; a, b, c, d ) dqz

(5.2)

for all m, n # Z+ . Since

lim
k � �

(&=&2
k q; q)� (=k(cd�q)1�2)2n NAW (n; tB(=k))

=NB(n; a, b, c, d )
2(c+d )

(1&q) cd(q, q, &c�d, &d�c; q)�

the theorem follows from (2.13), (2.17), and (5.2) by similar arguments as
in the little q-Jacobi case (see the proof of Theorem 4.2).

For the proof of (5.2), note that the parameters =&1(qc�d )1�2 and
&=&1(qd�c)1�2 of tB(=) cause a contribution to the discrete part of
( } , } ) tB (=)

AW for =>0 sufficiently small. In fact, we have for =>0 sufficiently
small,

(&=&2q; q)� (=(cd�q)1�2)m+n (hm , hn) tB (=)
AW

=
1

2? - &1 |
T

(=(cd�q)1�2)m+n hm(z) hn(z) 2� AW
c (z; =)

dz
z

+2 :
�

i=0

(=(cd�q)1�2)m+n (hmhn)(=&1(q�cd )1�2 cqi) 2� AW
d, 1 (i; =)

+2 :
�

i=0

(=(cd�q)1�2)m+n (hmhn)(&=&1(q�cd )1�2 dqi) 2� AW
d, 2 (i; =)

(5.3)

with 2� AW
c (z; =) :=(&=&2q; q)� 2AW

c (z; tB(=)) and with discrete weights

2� AW
d, 1 (i; =)=

(=2d�qc; q)�

(q, qa, =2ad�c, &d�c, &qbc�d, &=2b; q)�

_
(=&2qc�d, &=&2q, qa, &qbc�d; q) i

(=&2qc�ad, &=&2q�b, q, &qc�d; q) i

(=&2q2i+1c�d; q)1

(=&2qc�d; q)1

(qab)&i
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if =<(qc�d )1�2 qi and zero otherwise,

2� AW
d, 2 (i; =)=

(=2c�qd; q)�

(q, &qad�c, &=2a, &c�d, qb, =2bc�d; q)�

_
(=&2qd�c, &=&2q, &qad�c, qb; q) i

(&=&2q�a, =&2qd�bc, q, &qd�c; q) i

(=&2q2i+1d�c; q)1

(=&2qd�c; q)1

(qab)&i

if =<(qd�c)1�2 q i and zero otherwise. Now note that

(&=&2q; q)�=(=&1q1�2
- &1, &=&1q1�2

- &1,

=&1q - &1, &=&1q - &1; q)� ,

so it follows from Lemma 4.1(a), (c), and the Bounded Convergence
Theorem that

lim
k � �

1

2? - &1 |
T

(=k(cd�q)1�2)m+n hm(z) hn(z) 2� AW
c (z; =k)

dz
z

=0 (5.4)

for generic =0>0 (compare with the little q-Jacobi case (proof of
Theorem 4.2)). By a straightforward calculation, using Lemma 4.1(a) and
(b), we obtain for generic =0>0,

lim
k � �

2� AW
d, 1 (i; =k)

=
(c+d )

cd(q, q, &c�d, &d�c; q)�
2B(cqi; a, b, c, d) cqi (5.5)

lim
k � �

2� AW
d, 2 (i; =k)

=
(c+d )

cd(q, q, &c�d, &d�c; q)�
2B(&dq i; a, b, c, d ) dqi (5.6)

for i # Z+ . For generic =0>K :=max((qc�d )1�2, (qd�c)1�2) we furthermore
have the estimates

sup
k # Z+

|2� AW
d, 1 (i; =k)|= sup

k # Z+

|2� AW
d, 1 (i; q i=k)|

�M12B(cqi; a, b, c, d ) cqi (5.7)

sup
k # Z+

|2� AW
d, 2 (i; =k)|= sup

k # Z+

|2� AW
d, 2 (i; q i=k)|

�M22B(&dqi; a, b, c, d ) dqi (5.8)
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for i # Z+ , where M1 , M2>0 are independent of i. The first equality in
(5.7) respectively (5.8) follows from the fact that 2� AW

d, 1 (i; =)=0 for
=�(qc�d )1�2 qi, respectively 2� AW

d, 2 (i; =)=0 for =�(qd�c)1�2 q i. The second
inequality in (5.7) respectively (5.8) follows from Lemma 4.1(a), (b) and
the fact that the weights 2B are positive for the parameter values a, b, c,
d under consideration (compare with the little q-Jacobi case (proof of
Theorem 5.1)). Now we substitute ===k in (5.3) and take the limit k � �.
The infinite sums and limits may be interchanged by the estimates above
and the fact that the infinite sums

:
�

i=0

2B(cqi; a, b, c, d) cqi, :
�

i=0

2B(&dq i; a, b, c, d ) dqi

are absolutely convergent, so the limit (5.2) follows for generic =0>K by
(5.4), (5.5), and (5.6). K

Note that tB(=) # VAW for =>0 sufficiently small if the parameters a, b,
c, and d satisfy the assumptions of Theorem 5.1 (tB(=) given by (2.15)). So
in the proof of Theorem 5.1 we obtain the positive orthogonality measure
for the big q-Jacobi polynomials as a limit case of the positive (partly
discrete, partly continuous) orthogonality measure (4.2) for the Askey�
Wilson polynomials. In particular, the proof of Theorem 5.1 shows that the
only part of the (rescaled) orthogonality measure which survives in the
limit from Askey�Wilson polynomials to big q-Jacobi polynomials are
sums of two infinite sequences of discrete weights coming from residues of
2AW

c (z)�z at z==&1(qc�d)1�2 qi and z=&=&1(qd�c)1�2 qi, where =&1(qc�d )1�2

respectively &=&1(qd�c)1�2 is the parameter in tB(=) which tends to infinity
respectively minus infinity in the limit = a 0. The two infinite sequences of
weights are, up to a positive constant, exactly the set of weights which
occur in the orthogonality measure for the big q-Jacobi polynomials.

The big q-Jacobi polynomials were first hinted at by Hahn [H].
A detailed discussion of the orthogonality relations and norm evaluations
was given by Andrews and Askey [AA3]. The orthogonality relations and
norm evaluations were derived using the q-Vandermonde formula [AA3,
(3.29); GR, (II.6), p. 236] and the evaluation of the q-Jackson integral over
the weight function

|
c

&d
2B(z; a, b, c, d ) dqz

=
1q(1+:) 1q(1+;)

1q(2+:+;)
(&c�d, &d�c; q)� cd

(&qbc�d, &qad�c; d )� (c+d )

=(1&q) c
(q&d�c, &qc�d, q2ab; q)�

(qa, qb, &qbc�d, &qad�c; q)�
, (5.9)
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where a=q:, b=q;. The summation formula (5.9) is a q-analogue of the
beta integral which first appeared in [AA2, Theorem 1].

6. CONCLUDING REMARKS

The orthogonality relations and norm evaluations for the little q-Jacobi
polynomials (cf. Theorem 4.2) can also be obtained from the orthogonality
relations and norm evaluations of the big q-Jacobi polynomials
(Theorem 5.1) by considering the little q-Jacobi polynomials as limit cases
of the big q-Jacobi polynomials,

lim
d a 0

PB
n (z; b, a, 1, d )=PL

n (z; a, b) (n # Z+). (6.1)

See [K3] for details.
The proof of the orthogonality relations and norm evaluations for the

q-Racah polynomials, the big and the little q-Jacobi polynomials we have
presented in this paper has the advantage that summation formulas and
transformation formulas for basic hypergeometric series, which were used
in the original proofs of the orthogonality relations and norm evaluations,
are now no longer needed. In fact, with this method, various types of
summation formulas may be seen as special cases of integral type formulas.
For instance the three summation formulas (3.3), (4.15), and (5.9) are
obtained from the evaluation of the Askey�Wilson q-beta integral (2.2) by
calculating the residues of the integrand 2AW

c (z)�z in (2.2) and taking
suitable limits.

The first author [S2] has recently extended the methods of this paper to
the multivariable setting. The orthogonality relations and norm evaluations
for the multivariable q-Racah polynomials (defined in [DS]) and the
multivariable big resp. little q-Jacobi polynomials (defined in [S1]) can
then be obtained by taking suitable limit transitions in the orthogonality
relations and norm evaluations for the multivariable Askey�Wilson poly-
nomials (defined in [M, K1]). A paper on this subject is in preparation.
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